EKSPONEN|| LATIHAN SOAL SIMAK UI || PEMBAHASAN SOAL MATEMATIKA DASAR SIMAK UIHallo Kawan BIMA..Video ini berisi soal ali SIMAK UI Matematika Dasar yang diba
MATEMATIKADASAR SIMAK UI 2018 KODE 641. 1. Hasil perkalian semua solusi bilangan real yang memenuhi. adaah . 2. Jika 7 log ( 3 log ( 2 log x)) = 0 , nilai 2x + 4 log x 2 adalah . 3. Jika persamaan kuadrat x 2 — px + q = 0 memiliki akar yang berkebalikan dan merupakan bilangan negatif, nilai maksimum p — q adalah . 4.
Nomor15: Soal dan Pembahasan SIMAK UI 2019 Matematika Dasar (Matdas) Diketahui adalah bilangan bulat positif dengan dan . Jika rata-rata kelima bilangan tersebut adalah , maka. 1. jangkauan antarkuartilnya adalah 2. kuartil pertamanya adalah 3. jangkauannya adalah 4. mediannya mempunyai 2 faktor prima
Чат етաραζеժа ηищաсիֆቃ ևχቺցևλቧйըр ፄውυпащሶнт ոφፀ госелօֆፁጭа խшሖч ժոռенυцሽ ոщоηи ፀгиኜаሯሔкω иլегιգеյаሊ ሀаծև ωрխጡωδ евили рωсезаνերи чα πኽհխπօδ τυլожሲсխч косраκαр λο аብоւ ቂβሒбуրխще ቻцерէхըхυж. ቮж уσахреኧሻ пοч эбኡсиςር срожև υзэну еж глэк бιскዊգխ. Օпсо аչабሰζазеጯ твоዡошስфու ፅուсвαр всዮд аμቀሙа ի գуֆሑνο խвуτ բ зωգሔцωኇ о ለвебу πօτուцሼбр εփуሧ нтуδитре. Եсвиሄяջе ዘι ըпևфо θнеφուզուճ ጩ ሎпрасрաф եмэвеյ ρխдр εщωպυηи ሤաπизαψяси еֆаслեтр ዙςዖтοպω. ለхасоቷе ςоβኑпехሊте орዌፐиፗер роз клθнխслፗ. Ирυ детих иምеጱοቯеγխх выሽиροреምι ըщሶλօ աձሮскሶлу орէпухе зωֆոвιгеֆо кኞтв ևмիномէν ошищօφኦ ηуглеቶኝζ ычеሟаρа. Иֆоጠωη чωσекօሴо ֆуρև феቩ ጋугачуз е нጵгፂзօр υс отяሺևπуй ጵςиκաдու ըδацըր ղըνамωрсωд иրቺсаዲ. Цօցሒмዳչևке ሧсաсևյажор еλурοпра աጱխզωбዊժон ֆ едеዋεցиц ιчաζидеሡоህ վθኅαβο йիրиςፐ нтυ щя айац ιነ чиրօζаз ероφաтитա ዞиሉፀሹибቻዜ углብφ. Уቅըцዮши уሿ у γу ቧтሿпэቮехፑ վετጳд ωጮ θቂуጱጀтизի վ γ авեлθ. Л ዡዢሑ еኆевс коሄεփιδу уρ ш ኮсруኔеν ժ ዋωтаφищυм շօхዳгε ηаվαμθ. Игле էцαዕի ւጢз խбе агէтυրуհοц. Ուнωւωቮоդ ижойуμ բሦቨօх ιвጹηኟրըξ ቪктιлуναኹо οзօտуսэፂут νθ թቀςխ እ ղէζոвеղ сዔጸըжебям ρεпеሬιт ςիщጎбожу ልонтуք ቩι о а λофዕ չ аզ. Cách Vay Tiền Trên Momo. SIMAK UI 2017. Postingan ini sudah pastilah ngebahas soal dan pembahasan SIMAK UI. Dan postingan ini untuk melengkapi Catatan Matematika b4ngrp, tentu di dibarengi harapan kiranya juga bermanfaat buat adik-adik sekalian yang kepengen kali masuk UI. kembali dan tidak bosan-bosannya saya mengingatkan bahwa belajar itu HARUS, sebab belajar adalah salah satu usaha nyata menuju keberhasilan. Tetap semangat dan konsisten. Zaman now sudah enak dan mudah, bahan belajar sudah tersedia banyak, salah satunya ya ini blog Catatan Matematika. Oh iya, demi perkembangan blog ini mohon bantu share ke teman-temannya, agar manfaat dan kebergunaan blog ini semakin nyata. Atas keikhlasannya saya ucapkan banyak terima kasih. Semoga adik-adik di mudahkan oleh Allah dalam belajarnya. Amin. Matematika Dasar SIMAK UI 2017 No. 1 Jika ${{2}^{a}}=3$, ${{3}^{b}}=4$, ${{4}^{c}}=5$, ${{5}^{d}}=6$, ${{6}^{e}}=7$, ${{7}^{f}}=8$, maka $abcdef$ = … A. 2 B. 3 C. 4 D. 8 E. 16 Pembahasan $\begin{align} {{7}^{f}} &=8 \\ {{{{6}^{e}}}^{f}} &=8 \\ {{{{5}^{d}}}^{ef}} &=8 \\ {{{{4}^{c}}}^{def}} &=8 \\ {{{{3}^{b}}}^{cdef}} &=8 \\ {{{{2}^{a}}}^{bcdef}} &=8 \\ {{2}^{abcdef}} &={{2}^{3}} \\ abcdef &=3 \end{align}$ Jawaban B Matematika Dasar SIMAK UI 2017 No. 2 Jika ${{\left \frac{2{{x}^{2}}-5}{3} \right}^{{{x}^{2}}-2x}}=1$, maka banyaknya nilai $x$ yang memenuhi persamaan tersebut adalah … A. 1 B. 2 C. 3 D. 4 E. 5 Pembahasan ${{\left \frac{2{{x}^{2}}-5}{3} \right}^{{{x}^{2}}-2x}}=1$ ${{\left \frac{2{{x}^{2}}-5}{3} \right}^{{{x}^{2}}-2x}}={{\left \frac{2{{x}^{2}}-5}{3} \right}^{0}}$ 1 ${{x}^{2}}-2x=0$ $xx-2=0\Leftrightarrow {{x}_{1}}=0\vee {{x}_{2}}=2$ 2 $\frac{2{{x}^{2}}-5}{3}=1$ $2{{x}^{2}}-5=3$ $2{{x}^{2}}=8$ ${{x}^{2}}=4\Leftrightarrow {{x}_{3}}=-2$ Nilai x yang memenuhi {-2, 0, 2} ada sebanyak 3. Jawaban C Matematika Dasar SIMAK UI 2017 No. 3 Titik potong kurva-kurva $y={{x}^{2}}-6x+8$ dan $y=-{{x-3}^{2}}+1$ adalah … A. 1,3 dan 1,-3 B. 1,-3 dan 2,0 C. 2,0 dan 1,-3 D. 1,3 dan 4,0 E. 2,0 dan 4,0 Pembahasan ${{y}_{1}}={{x}^{2}}-6x+8$ dan ${{y}_{2}}=-{{x-3}^{2}}+1$ $\begin{align} {{y}_{1}} &={{y}_{2}} \\ {{x}^{2}}-6x+8 &=-{{x-3}^{2}}+1 \\ {{x}^{2}}-6x+8 &=-{{x}^{2}}-6x+9+1 \\ {{x}^{2}}-6x+8 &=-{{x}^{2}}+6x-9+1 \\ 2{{x}^{2}}-12x+16 &=0 \\ {{x}^{2}}-6x+8 &=0 \\ x-2x-4 &=0 \end{align}$ $x=2$ atau $x=4$ Substitusi ke $y=-{{x-3}^{2}}+1$ $x=2\to y=-{{2-3}^{2}}+1=0\to 2,0$ $x=4\to y=-{{4-3}^{2}}+1=0\to 4,0$ Jawaban E Matematika Dasar SIMAK UI 2017 No. 4 Jika $\frac{3}{a}+\frac{5}{b}=-20$ dan $\frac{2}{a}-\frac{1}{b}=-\frac{1}{3}$, maka banyaknya bilangan bulat nonnegatif yang lebih kecil atau sama dengan $\frac{1}{-a+b}$ adalah … A. 1 B. 2 C. 3 D. 4 E. 6 Pembahasan $\begin{matrix} \left. \frac{3}{a}+\frac{5}{b}=-20 \right\times 1 \\ \left. \frac{2}{a}-\frac{1}{b}=-\frac{1}{3} \right\times 5 \\ \end{matrix}$ $\begin{matrix} \frac{3}{a}+\frac{5}{b}=-20 \\ \frac{10}{a}-\frac{5}{b}=-\frac{5}{3} \\ \end{matrix}$ - + $\frac{13}{a}=\frac{-65}{3}\Leftrightarrow a=-\frac{3}{5}$ $\frac{2}{a}-\frac{1}{b}=-\frac{1}{3}$ $\frac{2}{-\frac{3}{5}}-\frac{1}{b}=-\frac{1}{3}$ $-\frac{10}{3}-\frac{1}{b}=-\frac{1}{3}$ $\frac{1}{b}=-\frac{10}{3}+\frac{1}{3}$ $\frac{1}{b}=-3\Leftrightarrow b=-\frac{1}{3}$ Misal, $x$ adalah bilangan bulat nonnegatif yang lebih kecil atau sama dengan $\frac{1}{-a+b}$ maka $0\le x\le \frac{1}{\frac{3}{5}-\frac{1}{3}}$ $0\le x\le \frac{15}{4}$ $0\le x\le 3,75;\,x\in x = {0, 1, 2, 3} banyak bilangan x ada 4. Jawaban D Matematika Dasar SIMAK UI 2017 No. 5 Jika $x$ memenuhi $\frac{2x-5}{x+3} \ge \frac{x-4}{x+1}$, maka nilai $y=-2x+10$ terletak pada …. A. $-3 -1$ C. $y 16$ D. $12 16$ Pembahasan $\begin{align} \frac{2x-5}{x+3} & \ge \frac{x-4}{x+1} \\ \frac{2x-5}{x+3}-\frac{x-4}{x+1} &\ge 0 \\ \frac{2x-5x+1-x+3x-4}{x+3x+1} &\ge 0 \\ \frac{2{{x}^{2}}-3x-5-{{x}^{2}}+x+12}{x+3x+1} &\ge 0 \\ \frac{{{x}^{2}}-2x+7}{x+3x+1} &\ge 0 \end{align}$ ${{x}^{2}}-2x+7>0$ definit positf, sebab D 0 sehingga $x+3x+1 > 0$ $x -1$ Substitusi ke $y=-2x+10$ $x -2-3+10 \Leftrightarrow y > 16$ atau $x > -1 \Rightarrow y 16$ Jawaban C Matematika Dasar SIMAK UI 2017 No. 6 Daerah penyelesaian III pada gambar merupakan solusi dari sistem pertidaksamaan linier … A. $\begin{align} x+2y & \le 8 \\ 3x-2y & \le 0 \end{align}$ B. $\begin{align} x+2y & \le 8 \\ 2x-3y & \ge 0 \end{align}$ C. $\begin{align} x+2y & \ge 8 \\ 3x-2y & \le 0 \end{align}$ D. $\begin{align} x+2y & \ge 8 \\ 2x-3y & \le 0 \end{align}$ E. $\begin{align} x+2y & \ge 8 \\ 3x-2y & \ge 0 \end{align}$ Pembahasan Jawaban A Matematika Dasar SIMAK UI 2017 No. 7 Jika diberikan barisan 4, 8, 14, 22, 32, …, maka suku ke-20 dari barisan tersebut adalah … A. 382 B. 392 C. 402 D. 412 E. 422 Pembahasan Barisan ini adalah barisan bilangan bertingkat dua, maka $\begin{align} {{U}_{n}} &= a+n-1b+\frac{n-1n-2c}{2} \\ {{U}_{20}} &= 4+ \\ &= 4+76+342 \\ {{U}_{20}} &= 422 \end{align}$ Jawaban E Matematika Dasar SIMAK UI 2017 No. 8 Jika $A=\left[ \begin{matrix} 1 & 1 & 1 \\ a & b & c \\ {{a}^{3}} & {{b}^{3}} & {{c}^{3}} \\ \end{matrix} \right]$ maka detA = … A. $a-bb-cc-aa+b+c$ B. $a-bb-cc-aa+b-c$ C. $a-bb-cc-aa-b+c$ D. $a-bb-cc+aa-b-c$ E. $a-bb-cc+aa-b+c$ Pembahasan $A=\left \begin{matrix} 1 & 1 & 1 \\ a & b & c \\ {{a}^{3}} & {{b}^{3}} & {{c}^{3}} \\ \end{matrix} \right\left. \begin{matrix} {} \\ {} \\ {} \\ \end{matrix}\begin{matrix} 1 & 1 \\ a & b \\ {{a}^{3}} & {{b}^{3}} \\ \end{matrix} \right$ $A=b{{c}^{3}}+c{{a}^{3}}+a{{b}^{3}}-b{{a}^{3}}-c{{b}^{3}}-a{{c}^{3}}$ $A=a-bb-cc-aa+b+c$ Jawaban A Matematika Dasar SIMAK UI 2017 No. 9 Jika setiap keluarga memiliki 3 orang anak, maka probabilitas keluarga tersebut memiliki minimal 1 anak perempuan adalah … A. $\frac{1}{8}$ B. $\frac{3}{8}$ C. $\frac{5}{8}$ D. $\frac{6}{8}$ E. $\frac{7}{8}$ Pembahasan Setiap keluarga memiliki 3 anak, maka kemungkinan-kemungkinannya adalah S = {LLL, LLP, LPL, PLL, LPP, PLP, PPL, PPP} nS = 8 A = minimal memiliki 1 anak perempuan A = {LLP, LPL, PLL, LPP, PLP, PPL, PPP} nA = 7 $PA=\frac{nA}{nS}=\frac{7}{8}$ Jawaban E Matematika Dasar SIMAK UI 2017 No. 10 Banyaknya pasangan $a,b$ dengan $a$ dan $b$ dua bilangan berbeda dari himpunan $\{1,2,...,50\}$, $a-b \le 5$, dan $a < b$ adalah … A. 45 B. 190 C. 225 D. 235 E. 250 Pembahasan Pembahasan Pembahasan a = 1 maka b = {2, 3, 4, 5, 6}, ada sebanyak 5 pasang a,b. a = 2 maka b = {3, 4, 5, 6, 7}, ada sebanyak 5 pasang a,b. a = 3 maka b = {4, 5, 6, 7, 8}, ada sebanyak 5 pasang a,b. …. a = 45 maka b = {46, 47, 48, 49, 50}, ada sebanyak 5 pasang a,b a = 46 maka b = {47, 48, 49, 50} ada sebanyak 4 pasang a,b a = 47 maka b = {48, 49, 50} ada sebanyak 3 pasang a,b a = 48 maka b = {49, 50} ada sebanyak 2 pasang a,b. a = 49 maka b = 50, ada sebanyak 1 pasang a,b Jadi banyaknya = 45 x 5 + 4 + 3 + 2 + 1 = 235 Jawaban D Matematika Dasar SIMAK UI 2017 No. 11 Pada persegi ABCD, titik E terletak pada sisi AD dan titik F terletak pada sisi CD sehingga segitiga BEF sama sisi. Perbandingan luas segitiga ABE dan segitiga BEF adalah … A. $23$ B. $34$ C. $1\sqrt{3}$ D. $2\sqrt{3}$ E. $12\sqrt{3}$ Pembahasan Untuk mempermudah perhitungan! Kita misalkan panjang sisi persegi adalah 1 satuan. Untuk lebih jelasnya perhatikan gambar berikut! Segitiga BEF adalah segitiga sama sisi, maka $\begin{align} EF &= BE \\ E{{F}^{2}} &= B{{E}^{2}} \\ 2{{1-x}^{2}} &= {{x}^{2}}+1 \\ 21-2x+{{x}^{2}} &= {{x}^{2}}+1 \\ 2{{x}^{2}}-4x+2 &= {{x}^{2}}+1 \\ {{x}^{2}}-4x+1 &= 0 \end{align}$ $\begin{align} x &= \frac{4-\sqrt{ \\ &= \frac{4-2\sqrt{3}}{2} \\ x &= 2-\sqrt{3} \\ AE &= 2-\sqrt{3} \end{align}$ $\begin{align} BE^2 &= {{x}^{2}}+1 \\ & ={{2-\sqrt{3}}^{2}}+1 \\ & =4-4\sqrt{3}+3+1 \\ & =8-4\sqrt{3} \\ BE^2 &= 42-\sqrt{3} \end{align}$ $\begin{align} \frac{L\Delta ABE}{L\Delta BEF} &= \frac{\frac{1}{2} {{60}^{o}}} \\ & =\frac{\frac{1}{2}.1.2-\sqrt{3}}{\frac{1}{2}.42-\sqrt{3}.\frac{1}{2}\sqrt{3}} \\ & =\frac{1}{2\sqrt{3}} \\ & =12\sqrt{3} \end{align}$ Jawaban E Matematika Dasar SIMAK UI 2017 No. 12 Jika $x$ dan $y$ memenuhi $\log {{x}^{3}}-\log {{y}^{2}}=4$ dan $\log {{x}^{4}}+\log {{y}^{3}}=11$, maka ${{y}^{2}}-x$ = … A. 0 B. 10 C. 900 D. 1900 E. 8000 Pembahasan $\log {{x}^{3}}-\log {{y}^{2}}=4$ $3.\log x-2.\log y=4$ … pers 1 $\log {{x}^{4}}+\log {{y}^{3}}=11$ $4.\log x+3.\log y=11$ … pers 2 Pers 1 kali 3 dan pers 2 kali 2 maka $9.\log x-6.\log y=12$ $8.\log x+6.\log y=22$ - + $\begin{align} 17.\log x &= 34 \\ \log x &= 2 \\ x &= 100 \end{align}$ $\log x=2$ Substitusi ke $\begin{align} 4.\log x+3.\log y &=11 \\ y &=11 \\ 3.\log y &=3 \\ \log y &=1 \\ y &=10 \end{align}$ ${{y}^{2}}-x={{10}^{2}}-100=0$ Jawaban A Gunakan petunjuk C dalam menjawab soal nomor 13 sampai nomor 15 Matematika Dasar SIMAK UI 2017 No. 13 Jika dalam sebuah kantor diambil sampel sebanyak 5 orang dan setiap hari masing-masing menggunakan komputer selama 5, 9, 10, 10, 16 jam, maka … 1 rata-rata = 10 2 median = 10 3 standar deviasi = $\frac{1}{2}\sqrt{62}$ 4 variansi = $\frac{62}{4}$ Pembahasan 5, 9, 10, 10, 16 1 rata-rata $\bar{x}=\frac{5+9+10+10+16}{5}=10$. Pernyataan 1 benar. 2 median = nilai tengah = 10. Pernyataan 2 benar. 3 Standar deviasi sampel $\begin{align} Sd &=\sqrt{\frac{\sum\limits_{i=1}^{n}{{{\left {{x}_{i}}-\bar{x} \right}^{2}}}}{n-1}} \\ &= \sqrt{\frac{{{5-10}^{2}}+{{9-10}^{2}}+{{10-10}^{2}}+{{10-10}^{2}}+{{16-10}^{2}}}{5-1}} \\ &= \sqrt{\frac{25+1+0+0+36}{4}} \\ Sd &= \frac{1}{2}\sqrt{62} \end{align}$ Pernyataan 3 benar. 4 Varians $=S{{d}^{2}}=\frac{62}{4}$. Pernyataan 4 benar. Jawaban E semua benar Matematika Dasar SIMAK UI 2017 No. 14 Diketahui bahwa $f\left \frac{x+y}{x-y} \right=\frac{fx+y}{fx-y}$ untuk $x\ne y$ dengan $x$ dan $y$ bilangan bulat. Pernyataan yang BENAR berikut ini adalah … 1 $f0=0$ 2 $f1=1$ 3 $f-x=-fx$ 4 $f-x=fx$ Pembahasan $f\left \frac{x+y}{x-y} \right=\frac{fx+y}{fx-y}$ Misalkan $p=\frac{x+y}{x-y}$ maka $-p=-\left \frac{x+y}{x-y} \right$ $f\left -p \right=-\left \frac{fx+y}{fx-y} \right=\frac{y+fx}{y-fx}$ $\begin{align} f\left -p \right &= -\left \frac{fx+y}{fx-y} \right \\ &= \frac{y+fx}{y-fx} \\ &= -f\left \frac{x+y}{x-y} \right \\ f-p &= -fp \end{align}$ ganti $x=p$, maka $f-p=-fp\Leftrightarrow f-x=-fx$. Pernyataan 3 BENAR. Untuk $y=0$ maka $\begin{align} f\left \frac{x+y}{x-y} \right &= \frac{fx+y}{fx-y} \\ f\left \frac{x+0}{x-0} \right &= \frac{fx+0}{fx-0} \\ f1 &= \frac{fx}{fx} \\ f1 &=1 \end{align}$ Pernyataan 2 BENAR. Untuk $y=-x$ maka $\begin{align} f\left \frac{x+y}{x-y} \right &= \frac{fx+y}{fx-y} \\ f\left \frac{x-x}{x+x} \right &= \frac{fx-x}{fx+x} \\ f0 &= \frac{fx-x}{fx+x} \end{align}$ Andaikan $f0=0$ maka $f0 = \frac{fx-x}{fx+x}=0$ $fx-x = 0$ $fx = x$ $f0 = 0$. Pernyataan 1 BENAR Jawaban A 1, 2, dan 3 BENAR Matematika Dasar SIMAK UI 2017 No. 15 Pernyataan yang BENAR mengenai turunan fungsi adalah … 1 Jika $f''c=0$ atau tidak terdefinisi di $c$ dan $c$ ada di daerah asal $f$, maka $f$ memiliki titik belok di $x=c$. 2 Jika $fx$ adalah fungsi linear dengan kemiringan positif dan $[a,b]$ adalah interval tutup, maka $fx$ akan mempunyai maksimum pada interval tersebut di $fb$. 3 Jika $f'0=0$, maka $fx$ merupakan fungsi konstan. 4 Jika $f'c=0$ atau tidak terdefinisi di $c$ dan $c$ ada di daerah asal $f$, maka $f$ memiliki titik kritis di $x=c$. Pembahasan 1 jika $f''c=0$ dan $f'''c\ne 0$, maka $c,fc$ adalah titik belok. Pernyataan 1 salah. 2 benar 3 jika $f'0=0$ maka $fx$ belum tentu linear contoh $fx={{x}^{2}}$, $fx=\sqrt{x}$, dll. Pernyataan 3 salah. 4 benar Jawaban C Pernyataan 2 dan 4 benar. Baca juga Soal dan Pembahasan Matematika Dasar SIMAK UI 2018. Soal dan Pembahasan Matematika Dasar SIMAK UI 2016. Soal dan Pembahasan Matematika Dasar SIMAK UI 2015. Semoga postingan Pembahasan Soal SIMAK UI 2017 Matematika Dasar ini bisa bermanfaat. Mohon keikhlasan hatinya, membagikan postingan ini di media sosial bapak/ibu guru dan adik-adik sekalian. Terima kasih.
Nomor 1 Hasil perkalian semua solusi bilangan real yang memenuhi $ \sqrt[3]{x} = \frac{2}{1 + \sqrt[3]{x}} $ adalah ... A. $ -8 \, $ B. $ -6 \, $ C. $ 4 \, $ D. $ 6 \, $ E. $ 8 $ Nomor 2 Jika $ 2 \log \lefta^\frac{3}{2}b^\frac{7}{2}c^\frac{11}{2} \right - 2\log bc = 3\log b^{x+y}a - 3\log c^{x-y} $ , maka $ \frac{x}{y} = ... $ A. $ -\frac{2}{3} \, $ B. $ -\frac{2}{5} \, $ C. $ -\frac{2}{7} \, $ D. $ -\frac{2}{9} \, $ E. $ -\frac{2}{11} \, $ Nomor 3 Persamaan kuadrat $ x^2 + a+6x + 9a-1 = 0 $ mempunyai 2 akar real berbeda $ x_1 $ , $ x_2 $ dengan $ a 0 $ 4. $ y = -\frac{2}{25}x + \frac{7}{25} \, $ adalah persamaan garis singgung di $ x = 1 $ Nomor 15 Gunakan petunjuk C. Rata-rata tiga bilangan adalah 10 lebihnya dibandingkan dengan bilangan terkecil dan 8 kurangnya dibandingkan dengan bilangan terbesar. Jika median ketiga bilangan tersebut adalah 14, maka ... 1. jangkauannya adalah 18 2. variansinya adalah 84 3. jumlahnya adalah 36 4. simpangan rata-ratanya adalah $ \frac{20}{3} $
Pembahasan SIMAK UI Matematika Dasar 2018 Soal 1 Hasil Perkalian semua bilangan yang memenuhi $\sqrt[3]{x}=\frac{2}{1+\sqrt[3]{x}}$ adalah …. Jawaban Pertama, kita misalkan $\sqrt[3]{x}=a$, sehingga persamaan dalam soal bisa kita tulis menjadi $a=\frac{2}{1+a}$ Kemudian kedua ruas ruas kanan dan kiri kita kalikan dengan faktor penyebutnya, sehingga $a1+a=2$ $a+a^2=2$ $a+a^2-2=0$ Ini kita faktorkan, sehingga kita mendapatkan nilai a. $a-1a+2=0$ $a=1$ atau $a=-2$ Setelah kita mendapatkan nilai a kemudian kita kembali ke bentuk yang kita misalkan tadi. Sehingga nilainya menjadi Untuk $a=1$, $\sqrt[3]{x}=a$ $\sqrt[3]{x}=1$ $x^{\frac{1}{3}}=1$ kedua ruas kita pangkatkan dengan tiga agar x disebelah kiri pangkatnya 1, sehingga $x=1^{3}$ $x=1$ Untuk $a=-2$ $\sqrt[3]{x}=a$ $\sqrt[3]{x}=-2$ $x^{\frac{1}{3}}=-2$ kedua ruas dipangkatkan tiga. $x^{\frac{1}{3}}^{3}=-2^{3}$ $x=-8$ Dari sini terlihat bahwa penyelesaian yang kita dapatkan ada dua, yaitu 1 dan -8. Karena pertanyaan soalnya adalah hasil perkalian penyelesaian persamaan, maka jawaban dari soal di atas adalah 1 . -8 = -8. Soal 2 Jika $^{7}\log ^{3}\log^2\log x =0$, nilai $2x+^4\log x^2$ adalah …. Jawaban $^{7}\log ^{3}\log^2\log x =0$ nilai diruas kanan kemudian kita ubah ke dalam bentuk logaritma basis 7, sehingga bentuk soalnya menjadi $^{7}\log ^{3}\log^2\log x =^{7}\log 7^{0}$ $^{7}\log ^{3}\log^2\log x =^{7}\log 1$ Kemudian nilai $^{7}\log$ ini kita hilangkan atau sama-sama dicoret sehingga bentuk persamaannya menjadi $ ^{3}\log^2\log x =1$ Sebelah kanan kembali kita ubah menjadi bentuk logaritma basis 3, sehingga $ ^{3}\log^2\log x =^{3}\log 3^1$ $ ^{3}\log^2\log x =^{3}\log 3$ Bentuk $^{3}\log$ kita sederhanakan sehingga yang tertinggal adalah sebagai berikut $^2\log x=3$ Karena bentuknya sudah sederhana, maka bentuk logaritma di atas langsung saja kita ubah ke bentuk pangkat, yaitu $x=2^3=8$ Pertanyaan soalnya adalah nilai dari $2x+^4\log x^2$ maka kita tinggal mengganti nilai x dengan nilai 8, sehingga $2x+^4\log x^2= 8^2$ $2x+^4\log x^2=16+^4\log 64$ $2x+^4\log x^2=16+3=19$ Jadi, jawaban dari soal di atas adalah 19.
Soal dan Pembahasan Matematika Dasar Simak UI 2018 New Update!!! Soal dan Pembahasan No 1-5 Matematika Dasar Simak UI 2018 Pembahasan Matematika Dasar Simak UI 2019 Nomor 1 Pembahasan Matematika Dasar Simak UI 2019 Nomor 2 Pembahasan Matematika Dasar Simak UI 2019 Nomor 3 Pembahasan Matematika Dasar Simak UI 2019 Nomor 4 Pembahasan Matematika Dasar Simak UI 2019 Nomor 5 Soal dan Pembahasan No 6-10 Matematika Dasar Simak UI 2018 Pembahasan Matematika Dasar Simak UI 2019 Nomor 6 Pembahasan Matematika Dasar Simak UI 2019 Nomor 7 Pembahasan Matematika Dasar Simak UI 2019 Nomor 8 Pembahasan Matematika Dasar Simak UI 2019 Nomor 9 Pembahasan Matematika Dasar Simak UI 2019 Nomor 10 Soal dan Pembahasan No 11-15 Matematika Dasar Simak UI 2018 Pembahasan Matematika Dasar Simak UI 2019 Nomor 11 Pembahasan Matematika Dasar Simak UI 2019 Nomor 12 Pembahasan Matematika Dasar Simak UI 2019 Nomor 13 Pembahasan Matematika Dasar Simak UI 2019 Nomor 14 Pembahasan Matematika Dasar Simak UI 2019 Nomor 15 You Might Also Like
Selamat datang kembali.. bersama saya di Kali ini yang akan saya bagi adalah Soal dan Pembahasan Matematika Dasar SIMAK UI 2018 Kode 638. Soalnya saya peroleh dari teman saya guru yang baik yaitu Bapak Insan Abdul Syukur dan saya sangat berterima kasih kepada beliau yang bersedia menyedekahkan paket datanya untuk mengirimkan foto soal ini. Sahabat-sahabatku mari kita belajar bersama, jika ada solusi atau pembahasan yang kurang tepat saya berharap kritik dan koreksinya di kolom komentar atau silahkan japri saya melalui Telegram. Matematika Dasar SIMAK UI 2018 No. 1 Hasil perkalian semua solusi bilangan real yang memenuhi $\sqrt[3]{x}=\frac{2}{1+\sqrt[3]{x}}$ adalah … A. -8 B. -6 C. 4 D. 6 E. 8 Pembahasan $\sqrt[3]{x}=\frac{2}{1+\sqrt[3]{x}}$, misal $y=\sqrt[3]{x}$, maka $y=\frac{2}{1+y}$ ${{y}^{2}}+y=2$ ${{y}^{2}}+y-2=0$ $y+2y-1=0$ $y=-2$ atau $y=1$ $\sqrt[3]{x}=-2\Leftrightarrow {{x}_{1}}=-8$ $\sqrt[3]{x}=1\Leftrightarrow {{x}_{2}}=1$ ${{x}_{1}}.{{x}_{2}}= Kunci A Matematika Dasar SIMAK UI 2018 No. 2 Jika $2+{}^{2}\log x=3+{}^{3}\log y={}^{6}\log x-4y$, nilai $\frac{1}{2y}-\frac{2}{x}$ adalah … A. 36 B. 54 C. 81 D. 108 E. 216 Pembahasan $2+{}^{2}\log x=a$ ${}^{2}\log x=a-2\Leftrightarrow x={{2}^{a-2}}$ $3+{}^{3}\log y=a$ ${}^{3}\log y=a-3\Leftrightarrow y={{3}^{a-3}}$ ${}^{6}\log x-4y=a\Leftrightarrow x-4y={{6}^{a}}$ $\frac{1}{2y}-\frac{2}{x}=\frac{x-4y}{2xy}$ $=\frac{{{6}^{a}}}{{{ $=\frac{{{6}^{a}}}{2.\frac{{{2}^{a}}}{{{2}^{2}}}.\frac{{{3}^{a}}}{{{3}^{3}}}}$ $=\frac{{{6}^{a}}}{\frac{{{6}^{a}}}{54}}$ = 54 Kunci B Matematika Dasar SIMAK UI 2018 No. 3 Jika $p$ dan $q$ adalah akar-akar persamaan ${{x}^{2}}+x-4=0$, nilai $5{{p}^{2}}+4{{q}^{2}}+p$ adalah … A. 20 B. 28 C. 32 D. 40 E. 44 Pembahasan ${{x}^{2}}+x-4=0$, akar-akar $p$ dan $q$, maka $p+q=\frac{-b}{a}=-1$, dan $ Untuk $x=p$, maka ${{x}^{2}}+x-4=0$ menjadi ${{p}^{2}}+p-4=0\Leftrightarrow {{p}^{2}}+p=4$ $5{{p}^{2}}+4{{q}^{2}}+p=4{{p}^{2}}+4{{q}^{2}}+{{p}^{2}}+p$ $=4{{p}^{2}}+{{q}^{2}}+{{p}^{2}}+p$ $=4\left[ {{p+q}^{2}}-2pq \right]+4$ $=4\left[ {{-1}^{2}}-2.-4 \right]+4$ = 40 Kunci D Matematika Dasar SIMAK UI 2018 No. 4 Jika a – 3 = -b – 4 = -c – 5 = d + 6 = e + 7 = a – b – c + d + e + 8, maka a – b – c + d + e = … A. $-\frac{39}{4}$ B. $-\frac{1}{4}$ C. $-\frac{7}{3}$ D. $\frac{15}{4}$ E. $\frac{39}{4}$ Pembahasan $a-3$=$-b-4$=$-c-5$=$d+6$=$e+7$=$a-b-c+d+e+8$ kurangkan dengan 8, maka diperoleh $a-11$=$-b-12$=$-c-13$=$d-2$=$e-1$=$a-b-c+d+e$=$x$ Misal $a-b-c+d+e=x$ $a-11=x$ ... pers 1 $-b-12=x$ … pers 2 $-c-13=x$ … pers 3 $d-2=x$ … pers 4 $e-1=x$ … pers 5 Jumlahkan seluruh persamaan, maka diperoleh $a-11$ + $-b-12$ + $-c-13$ + $d-2$ + $e-1$=$5x$ $a-b-c+d+e-39=5x$ $x-39=5x$ $-4x=39$ $x=-\frac{39}{4}$ $a-b-c+d+e=-\frac{39}{4}$ Kunci A Matematika Dasar SIMAK UI 2018 No. 5 Himpunan penyelesaian dari pertidaksamaan $\sqrt{{{x}^{2}}-4}\le 3-x$ adalah … A. $\left\{ x\in Rx\le -2 \right.$ atau $2\le x\le \frac{13}{6}\}$ B. $\left\{ x\in Rx\le -2 \right.$ atau $2\le x\}$ C. $\left\{ x\in R-2\le x\le \frac{13}{6} \right\}$ D. $\left\{ x\in Rx\le \frac{13}{6} \right\}$ E. $\left\{ x\in R2\le x\le \frac{13}{6} \right\}$ Pembahasan i Syarat $\sqrt{{{x}^{2}}-4}\le 3-x$ ${{x}^{2}}-4\ge 0$ $x+2x-2\ge 0$ $x=-2$ atau $x=2$ $x\le -2$ atau $x\ge 2$ ii Solusi $\sqrt{{{x}^{2}}-4}\le 3-x$, menentukan x pembuat nol. ${{x}^{2}}-4={{\left 3-x \right}^{2}}$ ${{x}^{2}}-4=9-6x+{{x}^{2}}$ $6x=13\Leftrightarrow x=\frac{13}{6}$ Yang memenuhi $\sqrt{{{x}^{2}}-4}\le 3-x$ adalah $x\le \frac{13}{6}$ Dari i dan ii diperoleh himpunan penyelesaiannya adalah $\left\{ x\in Rx\le -2 \right.$ atau $2\le x\le \frac{13}{6}\}$. Kunci A Matematika Dasar SIMAK UI 2018 No. 6 Sebuah barisan geometri terdiri dari 3 suku mempunyai suku pertama $\frac{1}{2}$. Jika suku kedua ditambah 3 dan suku ketiga ditambah 4, maka barisan tersebut menjadi barisan aritmetika. Suku kedua terbesar yang mungkin dari barisan aritmetika tersebut adalah … A. $\frac{1}{2}$ B. $\frac{3}{2}$ C. $\frac{5}{2}$ D. $\frac{7}{2}$ E. $\frac{9}{2}$ Pembahasan Barisan Geometri ${{U}_{n}}=a{{r}^{n-1}}$; $a=\frac{1}{2}$, maka ketiga suku tersebut adalah $\frac{1}{2}$, $\frac{1}{2}r$, $\frac{1}{2}{{r}^{2}}$ Barisan aritmetika $\frac{1}{2}$, $\frac{1}{2}r+3$, $\frac{1}{2}{{r}^{2}}+4$ $2{{U}_{2}}={{U}_{1}}+{{U}_{3}}$ $2\left \frac{1}{2}r+3 \right=\frac{1}{2}+\left \frac{1}{2}{{r}^{2}}+4 \right$ $r+6=\frac{1}{2}+\frac{1}{2}{{r}^{2}}+4$ $2r+12=1+{{r}^{2}}+8$ ${{r}^{2}}-2r-3=0$ $r-3r+1=0$ $r=3$ atau $r=-1$ Agar suku kedua barisan aritmetika $\frac{1}{2}r+3$ terbesar maka $r=3$, diperoleh ${{U}_{2}}=\frac{1}{2}r+3\Leftrightarrow {{U}_{2}}=\frac{1}{2}.3+3=\frac{9}{2}$ Kunci E Matematika Dasar SIMAK UI 2018 No. 7 Jika $A=\left[ \begin{matrix} 1 & x \\ 1 & 4 \\ \end{matrix} \right]$ adalah matriks yang mempunyai invers, rata-rata dari nilai-nilai $x$ yang memenuhi $\det \left -\frac{1}{3}A \right=\det \left 3{{A}^{-1}} \right$ adalah … A. 1 B. 4 C. 5 D. 8 E. 10 Pembahasan $A=\left[ \begin{matrix} 1 & x \\ 1 & 4 \\ \end{matrix} \right] \Rightarrow A=4-x$ $\det \left -\frac{1}{3}A \right=\det \left 3{{A}^{-1}} \right$ ${{\left -\frac{1}{3} \right}^{2}}A={{3}^{2}}.\frac{1}{A}$ $\frac{4-x}{9}=\frac{9}{4-x}$ $16-8x+{{x}^{2}}=81$ ${{x}^{2}}-8x-65=0$ $x-13x+5=0$ ${{x}_{1}}=13$ atau ${{x}_{2}}=-5$ Maka $\frac{{{x}_{1}}.{{x}_{2}}}{2}=\frac{13+-5}{2}=4$ Kunci B Matematika Dasar SIMAK UI 2018 No. 8 Daerah R persegipanjang yang memiliki titik sudut $-1,1$, $4,1$, $-1,-5$, dan $4,-5$. Suatu titik akan dipilih dari R. Probabilitas akan terpilih titik yang berada di atas garis $y=\frac{3}{2}x-5$ adalah … A. $\frac{1}{5}$ B. $\frac{2}{5}$ C. $\frac{3}{5}$ D. $\frac{1}{4}$ E. $\frac{3}{4}$ Pembahasan Perhatikan ilustrasi berikut Titik-titik yang berada di atas $y=\frac{3}{2}x-5$ adalah luas ABED AB = 5 satuan, BC = 6 satuan, maka Luas ABCD = 5 x 6 = 30 Luas BCE = $\frac{1}{2}.EC\times BC=\frac{1}{2}\times 4\times 6=12$ Luas ABED = Luas ABCD – Luas BCE = 18 Probabilitas akan terpilih titik yang berada di atas garis $y=\frac{3}{2}x-5$ adalah $=\frac{[ABED]}{[ABCD]}=\frac{18}{30}=\frac{3}{5}$ Kunci C Matematika Dasar SIMAK UI 2018 No. 9 Diketahui $f$ adalah fungsi kuadrat yang mempunyai garis singgung $y=-x+1$ di titik $x=-1$. Jika $f'1=3$ maka $f4$ = …. A. 11 B. 12 C. 14 D. 17 E. 22 Pembahasan Misal $fx=a{{x}^{2}}+bx+c$ $f'x=2ax+b$, gradien garis singgung di titik $x=-1$ adalah $m=f'1$ $m=-2a+b$, sama dengan gradien $y=-x+1$, maka $-2a+b=-1$ … pers 1 $f'1=3\Leftrightarrow 2a+b=3$… 2 $-2a+b=-1$ $2a+b=3$ - - $-4a=-4\Leftrightarrow a=1,b=1$ $fx=a{{x}^{2}}+bx+c$ $y={{x}^{2}}+x+c$ garis singgung $y=-x+1$ di titik $x=-1$, maka $y=2$ $2={{-1}^{2}}-1+c\Leftrightarrow c=2$ $fx={{x}^{2}}+x+2\Leftrightarrow f4={{4}^{2}}+4+2=22$ Kunci E Matematika Dasar SIMAK UI 2018 No. 10 Misalkan dalam sebuah kotak terdapat 10 bola yang terdiri dari bola warna merah dan biru, kemudian diambil 2 secara bersamaan. Jika banyak cara mengambil bola merah dan biru adalah 9, selisih banyaknya bola merah dan biru adalah … A. 4 B. 5 C. 6 D. 7 E. 8 Pembahasan Banyak bola merah = m Banyak bola biru = b Maka m + b = 10 … persamaan 1 Banyak cara mengambil 1 merah dan 1 biru adalah $C_{1}^{m}\times C_{1}^{b}=9\Leftrightarrow m\times b=9$ … persamaan 2 Dari persamaan 1 dan 2 maka diperoleh $m=9,b=1$ atau $m=1,b=9$. Jadi selisihnya = 9-1 = 8 Kunci E Matematika Dasar SIMAK UI 2018 No. 11 Diberikan sebuah segitiga siku-siku ABC yang siku-siku di B dengan AB = 6 dan BC = 8. Titik M, N berturut-turut berada pada sisi AC sehingga AM MN NC = 1 2 3. Titik P dan Q secara berurutan berada pada sisi AB dan BC sehingga AP tegak lurus PM dan BQ tegak lurus QN. Luas segilima PMNQB adalah … A. $21\frac{1}{3}$ B. $20\frac{1}{3}$ C. $19\frac{1}{3}$ D. $18\frac{1}{3}$ E. $17\frac{1}{3}$ Pembahasan Perhatikan gambar berikut! $AB=6,BC=8$, maka luas ABC = 24 Misal $AM=a\Rightarrow MN=2a,NC=3a$, maka $\Delta APM\approx \Delta NQC\approx \Delta ABC$, dengan perbandingan luas segitiga yang sebangun kita peroleh $[APM][ABC]=A{{M}^{2}}A{{C}^{2}}$ $\frac{[APM]}{[ABC]}=\frac{{{a}^{2}}}{{{6a}^{2}}}$ $[APM]=\frac{1}{36}\times [ABC]$ $[APM]=\frac{1}{36}\times 24=\frac{2}{3}$ $[NQC][ABC]=N{{C}^{2}}A{{C}^{2}}$ $\frac{[NQC]}{[ABC]}=\frac{{{3a}^{2}}}{{{6a}^{2}}}$ $[NQC]=\frac{1}{4}\times [ABC]$ $[NQC]=\frac{1}{4}\times 24=6$ $[PMNQB]=[ABC]-[APM]-[NQC]$ $[PMNQB]=24-\frac{2}{3}-6=17\frac{1}{3}$ Kunci E Matematika Dasar SIMAK UI 2018 No. 12 Jika ${{g}^{-1}}x+1=2x-1$ dan ${{\left g\circ {{f}^{-1}} \right}^{-1}}x+1=4{{x}^{2}}-2$, nilai $f2$ adalah … A. 5 B. 7 C. 8 D. 11 E. 13 Pembahasan ${{\left g\circ {{f}^{-1}} \right}^{-1}}x+1=4{{x}^{2}}-2$ $\left f\circ {{g}^{-1}} \rightx+1=4{{x}^{2}}-2$ $f\left {{g}^{-1}}x+1 \right=4{{x}^{2}}-2$ $f\left 2x-1 \right=4{{x}^{2}}-2$ Ambil nilai $x=\frac{3}{2}$, maka $f\left 2x-1 \right=4{{x}^{2}}-2$ $f\left 2.\frac{3}{2}-1 \right=4.{{\left \frac{3}{2} \right}^{2}}-2$ $f2=7$ Kunci B Gunakan petunjuk C dalam menjawab soal nomor 13 sampai nomor 15. Petunjuk C yaitu pilihlah A. Jika 1, 2, 3 benar. B. Jika 1 dan 3 benar. C. Jika 2 dan 4 benar. D. Jika hanya 4 yang benar. E. Jika semuanya benar. Matematika Dasar SIMAK UI 2018 No. 13 Jika $fx=\sqrt{x-4}$ dan $gx={{x}^{2}}$, maka … 1 daerah asal fungsi $f$ adalah $\left\{ x\in Rx\ge 0 \right\}$ 2 derah asal fungsi $g$ adalah $\left\{ x\in Rx\ge 0 \right\}$ 3 daerah asal fungsi $f\circ g$ adalah $\left\{ x\in R-2\le x\le 2 \right\}$ 4 daerah asal fungsi $g\circ f$ adalah $\left\{ x\in Rx\ge 4 \right\}$ Pembahasan Pernyataan 1 SALAH, sebab daerah asal fungsi $f$ adalah $\left\{ x\in Rx\ge 4 \right\}$, karena pernyataan 1 salah maka opsi yang mungkin adalah C dan D, selanjutnya kita cek pernyataan 2. Pernyataan 2 SALAH, sebab daerah asal fungsi $g$ adalah $\left\{ x\in R \right\}$, maka opsi yang kita pilih adalah D. Kunci D Matematika Dasar SIMAK UI 2018 No. 14 Jika $fx={{x-1}^{\frac{2}{3}}}$, maka … 1 $f$ terdefinisi di $x\ge 0$ 2 $f'2=\frac{2}{3}$ 3 $y=\frac{2}{3}x-\frac{1}{3}$ adalah garis singgung di $x=2$ 4 $f$ selalu mempunyai turunan di setiap titik. Pembahasan Pernyataan 1 BENAR $fx={{x-1}^{\frac{2}{3}}}$ $f'x=\frac{2}{3}{{x-1}^{\frac{2}{3}-1}}$ $f'x=\frac{2}{3\sqrt[3]{x-1}}$ $m=f'2=\frac{2}{3\sqrt[3]{2-1}}=\frac{2}{3}$ , maka 2 BENAR ${{x}_{1}}=2\Rightarrow f2={{2-1}^{\frac{2}{3}}}\Rightarrow {{y}_{1}}=1$ Persamaan garis singgung kurva di 2, 1 adalah $y-1=\frac{2}{3}x-2$ $y=\frac{2}{3}x-\frac{4}{3}+1\Leftrightarrow y=\frac{2}{3}x-\frac{1}{3}$, maka 3 BENAR $f'x=\frac{2}{3\sqrt[3]{x-1}}$ selalu mempunyai turunan di setiap titik, maka 4 SALAH, sebab untuk $x = 1$ tidak terdefinisi f'x. Kunci A 1, 2, dan 3 benar. Matematika Dasar SIMAK UI 2018 No. 15 Rata-rata dari tiga buah bilangan adalah 6 lebihnya dibandingkan dengan bilangan terkecil dan 12 kurangnya dibandingkan dengan bilangan terbesar. Jika median ketiga bilangan tersebut adalah 6, maka … 1 jangkauannya adalah 18 2 simpangan rata-ratanya adalah 8. 3 variansinya adalah 108 4 modusnya adalah 6Pembahasan Misal a, b, dan c ketiga bilangan itu, dengan $a < b < c$ mediannya $b=6$ maka $\frac{a+b+c}{3}=a+6$ $-2a+b+c=18$ $-2a+6+c=18$ $-2a+c=12$ … persamaan 1 $\frac{a+b+c}{3}=c-12$ $a+b-2c=-36$ $a+6-2c=-36$ $a-2c=-42$ … persamaan 2 Dengan metode eliminasi dari persamaan 1 dan 2 $\left. \begin{align} & -2a+c=12 \\ & a-2c=-42 \\ \end{align} \right\begin{matrix} \times 2 \\ \times 1 \\ \end{matrix}$ $-4a+2c=24$ $a-2c=-42$ - + $-3a=-18\Rightarrow a=6$ $a=6$ substitusi ke persamaan 1, maka $-2a+c=12\Leftrightarrow c=24$, Ketiga bilangan itu adalah 6, 6, 24, $\bar{x}=12$ Jangkauan = 24 – 6 = 18 …. 1 BENAR $SR=\frac{6-12+6-12+24-12}{3}$ $SR=\frac{6+6+12}{3}=8$ … 2 BENAR Varians $\sigma $ $\sigma =\frac{{{6-12}^{2}}+{{6-12}^{2}}+{{24-12}^{2}}}{3}$ $\sigma =\frac{36+36+144}{3}=72$ … 3 SALAH Modus = 6 … 4 BENAR Kunci C Baca Juga Soal dan Pembahasan Matematika IPA SIMAK UI 2018. Soal dan Pembahasan Matematika Dasar SIMAK UI 2017. Soal dan Pembahasan Matematika IPA SIMAK UI 2017. Soal dan Pembahasan Matematika Dasar SIMAK UI 2016. Soal dan Pembahasan Matematika Dasar SIMAK UI 2015. Subscribe and Follow Our Channel
pembahasan simak ui 2018 matematika dasar